National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
The role of ERK1 and ERK2 protein kinases in the MAPK/ERK signaling
Galvánková, Kristína ; Vomastek, Tomáš (advisor) ; Dráber, Peter (referee)
The MAPK/ERK cascade is highly conserved signalling pathway regulating cellular processes which are necessary for cell life, such as proliferation, differentiation, apoptosis or cell migration. All these cellular responses are the result of the processing of extracellular signals through three-tier ERK cascade consisting of protein kinases Raf, MEK and ERK. The signal is transmitted by sequential phosphorylation where RAF phosphorylates MEK and MEK phosphorylates and activates ERK. Protein kinase ERK then phosphorylates and regulates a wide range of substrates at different locations in the cell. This affects the cellular response to the extracellular signal. Regulation of this pathway on every level is very important and is modulated by interaction partners and adaptor proteins. Deregulation of the pathway as well as mutations of individual protein kinases can lead to severe pathological consequences. At the level of ERK, there are two isoforms, ERK1 and ERK2, which are more than 80 % identical at the amino acid level. Their high sequence similarity has triggered the interest of many authors for more detailed examination of both isoforms in respect of their evolutionary conservation and whether they are functionally redundant or whether they have specific functions. The aim of this work is to...
Structural basis of cell invasion
Hrčkulák, Dušan ; Novotný, Marian (advisor) ; Hájková, Zuzana (referee)
Mezenchymal migration strategy is a mode of individual cell invasion, along with an ameboid migration strategy. It is dependent on cell adhesion structures formation and traction forces generation. This work is focused on integrin-mediated cell to extracellular matrix connections called focal adhesions. Focal adhesions are very complex and comprise of many proteins. The clusters of integrin dimers make up the focal adhesion core that binds extracellular matrix. Their intracellular domains indirectly interact with actin stress fibres throught plaque proteins talin and vinculin. Focal adhesion assembly is force dependent and its commponents turnover is also regulated by focal adhesion kinase and prolin-rich tyrosin kinase 2. These kinases are probably recruited to focal adhesions by paxillin and then linked to signaling complexes by adaptor proteins as p130Cas. The 3D structure is what defines the options of interaction among participating proteins. Therefore, this work summarizes 3D structures of six proteins of interest, deals with their interactions and impact on focal adhesions. PDB codes of all available structures of these six proteins are enclosed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.